Minimal residual disease in acute lymphoblastic leukemia

Technical, economical, and validation – QC considerations for multicenter MRD assessment

J.J.M. van Dongen

Detection of minimal residual disease (MRD) in ALL

Detection of minimal residual disease in acute leukemia

Technique	Applicability	Detection limit	Remark
Flow cytometry (4 to 6 colors)	BCP-ALL: 85% T-ALL: 90% AML: 60-70%	(10-3-) 10-4	Fast, but variable sensitivity because of similarities between normal (regenerating) cells and malignant cells
PCR of Ig/TCR genes	BCP-ALL: 95% T-ALL: 95% AML: 10-15%	10-4-10-5	Time consuming and relatively expensive (junctional region sequencing), but applicable in ≥ 95% of lymphoid malignancies
PCR of fusion transcripts and mutations	BCP-ALL: 40% T-ALL: 25% AML: 25-40%	10 ⁻⁴ -10 ⁻⁶	Limited applicability in ALL, but potentially useful in specific subgroups, e.g. BCR-ABL cases in specific protocols

MRD diagnostics in ALL

From research tool to surrogate endpoint in ALL treatment

- 1. Definitions of MRD remission, MRD recurrence, relapse
- 2. When should MRD be measured and which sensitivity
- 3. Evaluation of:
 - Induction Treatment
 - Continuous Monitoring
 - Treatment blocks (new drugs)

Dependent on disease category and treatment protocol

- 4. Comparison between MRD studies: time points and quantitative range & sensitivity
- 5. MRD techniques: Ig/TCR PCR and/or Flow Cytometry
- 6. Standardization and Quality Control

Collaborative networks on standardization & quality control

From Ig gene to Ig molecule

Relapse free survival in I-BFM-SG study according to the combined MRD information at time points 1 and 2 (n=129)

I-BFM-SG Report, J.J.M. van Dongen et al, Lancet 1998;352:1731-1738

PCR analysis of Ig/TCR genes

High levels of standardization required

Guidelines for RQ-PCR analysis of TCR/Ig gene rearrangements

European Study Group on MRD detection Chairman: J.J.M. van Dongen www.EuroMRD.org

Supported by Leukaemia & Lymphoma Research, LeukemiaNet, and EuroClonality

MRD diagnostics in infant ALL: Interfant-99 protocol

Current MRD technique in lymphoid malignancies

Disadvantages of Ig/TCR-based MRD-PCR techniques:

labor intensive (junctional regions per patient);

- require specialized laboratories;
- time consuming (target identification: 4 to 6 weeks)
- Faster technique needed: 8-color flow cytometry?

EFS of MRD-based risk groups (FCM at day 29) in COG protocol

Borowitz et al., Blood 2008; 111: 5477-5485.

MRD window, time points, MRD techniques and QR & sensitivity

Precursor-B-cells in BM during ALL treatment

Therapy-induced immunophenotypic shifts

Van der Sluijs et al, LEUKEMIA 2005; 19: 1845-1847

RQ-PCR and flowcytometric MRD in childhood ALL

Ryan J., et al. MRD detection in childhood ALL patients at multiple time-points reveals high levels of concordance between molecular and immunophenotypic approaches. Br J Haematol 2008 144: 107-115

RQ-PCR and flowcytometric MRD in childhood ALL

Thörn, I. et al. MRD assessment in childhood ALL: a Swedish multi-centre study comparing real-time polymerase chain reaction and multicolour flow cytometry. Br J Haematol 2011 152: 743-753

RQ-PCR and flowcytometric MRD in childhood ALL (only positive data in quantitative range)

RQ-PCR and 4-color/6-color flow cytometric MRD in childhood ALL

MRD-based risk groups (day 33 and day 78) in 171 patients of the DCOG-ALL10 protocol

		RQ-PCR (Ig/TCR) based risk groups					
		HR (6%)	MR (62%)	LR (30%)	NAª		
FCM- based risk group	HR (5%)	6 (4%)	2 (1%)	0 (0%)	0 (0%)		
	MR (38%)	3 (2%)	60 (35%)	1 (1%)	0 (0%)		
	LR (59%)	0 (0%)	44 (26%)	49 (29%)	6 (4%) a		

^a Not applicable: Six patients could not be classified with molecular MRD analysis (no Ig/TCR marker with at least a quantitative range of 10⁻⁴).

Risk group definition

Different composition of risk groups

(25-40% shifts between SR and MR)

Current position of FCM in MRD diagnostics

1. FCM has proven to be useful for MRD detection, BUT:

- does FCM measure the same as PCR?
- can FCM replace PCR?
- can FCM supplement PCR?
 (e.g. in cases without sensitive Ig/TCR targets)

2. FCM can easily become broadly available

- no special laboratory facilities
- high-tech FCM equipment (≥ 8 colors) for moderate costs

!!! ATTENTION FOR:

- standardization
- improvement of specificity and sensitivity (new markers)
- broadly accepted antibody protocols
- international guidelines for data acquisition and interpretation

Aims in Flow cytometric MRD diagnostics

Fully standardized flow cytometric MRD detection!

- 1. Multicenter design, standardization, and clinical (protocol-related) evaluation of innovated flow cytometric MRD detection:
 - 8 colors: increased sensitivity
 - new markers (particularly fusion proteins/oncoproteins):
 increased specificity
 - new software (fast, easy, automated)
- 2. Evaluation of flow cytometric MRD detection in full parallel to Ig/TCR based MRD detection, using strict international guidelines for instrument settings, data acquirement, and data interpretation

BCP-ALL panel

Mix of 3 different regenerating B cell populations (Haematogones)

Precursor B-cell differentiation in normal vs regenerating bone marrow

Normal BM

Normal vs Regenerating BM

CD19 Gated B-cells (excluding PC)

Four BCP-ALL cases vs normal precursor B-cells

APS view 1

APS view 2

Case 1

Case 2

Case 3

Case 4

Conclusions

- 1. PCR-based MRD diagnostics (IG/TCR genes of fusion genes) is currently the gold standard in many European ALL protocols
- 2. Differences in MRD value between protocols is mainly caused by application of different non-standardized MRD techniques, which also differ in sensitivity.
- 3. PCR-based MRD diagnostics can potentially be replaced by 8-color flow cytometry (Novel developments are required)
- 4. Standardization, regular Quality Control, and guidelines for data interpretation and data reporting are essential for international comparability of MRD results (within and between treatment protocols).

Collaborative networks on standardization & quality control are essential